
CSAW ESC 2024 Final Report

TRX Technical Labs - Sapienza

Simone Di Maria
University of Verona

simonedimaria2004@gmail.com

Kristjan Tarantelli
Sapienza University of Rome
tarantelli.kristjan@gmail.com

Francesco Bianchi
Sapienza University of Rome

f.bianchi202@gmail.com

Lorenzo Colombini
Sapienza University of Rome

lorenzinco23@gmail.com

Emilio Coppa
Luiss University of Rome

ecoppa@luiss.it

Abstract—This report presents our approach to hardware-
based challenges centered on analyzing signal patterns and
matrix transformations. Prohibited from using code disassembly,
we relied on a logic analyzer to capture and interpret binary
signals, uncovering QR codes, encrypted sequences, and motor
signal patterns. For tasks requiring data classification, we applied
machine learning models to analyze audio and vibration data
with high accuracy. This integrated approach enabled us to
decode complex messages and solve each phase of the challenge.

I. INTRODUCTION

Side-Channel Attacks (SCAs) exploit vulnerabilities in
hardware by analyzing physical behaviors like timing vari-
ations or signal patterns, which can reveal confidential data
without targeting software flaws. These attacks may impact
systems otherwise considered secure, exposing sensitive in-
formation or modifying system behavior through indirect
manipulation.

This report details our methods for tackling hardware-
based challenges, focusing on signal capture and pattern
analysis without conventional reverse engineering. Using a
logic analyzer, we extracted meaningful data from signals,
applied matrix transformations, and leveraged timing analysis
to decode sequences. Designed by the CSAW ESC 2024
organizers, the challenges ran on an Arduino-based system,
where we explored how encrypted data and encoded sequences
could be interpreted through signal-based attacks.

II. OUR APPROACH

For this year’s challenge, we adopted a hardware-focused
methodology, avoiding traditional code analysis. Our primary
strategy involved using a logic analyzer to capture output
signals from key components, enabling us to deduce device
behaviors and functionality directly.

Through careful examination of signal data, we identified
the structure and operations of system components, using
matrix transformations and timing patterns to progress through
the tasks. This approach, centered on signal interpretation
rather than code disassembly, proved effective for nearly all
hardware tasks.

In analyzing the hardware setup, we mapped the connections
from the Arduino to its peripherals. This modular connectivity
allowed us to connect selectively to the Arduino or peripheral
inputs as needed, enabling targeted testing and efficient results.

For tasks involving machine learning, specifically in Week
2, we applied algorithmic models to classify audio and vibra-
tion data. Through segmentation, feature extraction, and model
training, our approach delivered accurate classification results,
advancing our progress in these challenges.

III. CHALLENGE SOLUTIONS

We attempted all the challenges, but we focused on the first
ones.

TABLE I: Summary of challenge results

Week Challenge Status Secret
1 Normal Or Though Solved Kw1CkRe5p0Nze
1 Friendly Disposition Solved S3qu3NC3 (n0T sEQU!ns)
2 KeyRing 1 Solved DDAACAAACDCA...
2 KeyRing 2 Attempted -
3 Lizzy Solved ZLHNKSGON - IDONTKNOW
3 Fast & Max Solved 6203882345218489
4 Safecracker 1 Solved 131S-92S-7S
4 Safecracker 2 Solved 196I-60D-41S-20S-15I

Week 1

1) Normal Or Though: After loading the firmware, we
observed no activity in the servo, stepper motor, or fan,
suggesting a need for further investigation. The challenge’s
”quiet room” hint prompted us to connect a logic analyzer
to monitor signals directed to the Arduino. Through this
analysis, we discovered that the fan was receiving alternating
binary signals—either all 1s or all 0s—at intervals of 0.5
seconds. Sampling these signals produced a bit sequence that
we arranged into a 34 × 34 matrix, with a distinctive 0000
pattern recurring every 34 bits.

Fig. 1: First QR code extracted, which led to the challenge’s
gist

Visualizing the matrix revealed a QR code (see Figure 1),
which led us to a GitHub gist containing the next part of
the challenge. In this phase, we were given two matrices, Q
and R, both defined over the real numbers. Interestingly, Q
was a lower triangular matrix, with zeros in the upper right
section, suggesting the potential for a Cholesky decomposition
approach. Computing Q×QT yielded an integer-based matrix
with a structure that hinted at an image—specifically, a QR
code pattern when plotted in SageMath (see Figure 2).

At this stage, it became apparent that we needed to experi-
ment with the transformations between Q and R. After several
tests, we discovered that multiplying R×QT revealed another
QR code, leading to a Google Form that contained the flag:
Kw1CkRe5p0Nze.

2) Friendly Disposition: This challenge opened with a
message on the serial console, signaling the start of Phase
1 and presenting an encoded sequence: AABCE. From initial
observations, it appeared that this sequence might align with
the Fibonacci series, as the letters could correspond to the
series values: A = 1, A = 1, B = 2, C = 3, E = 5.

To test this theory, we examined the signal patterns sent
to the stepper motor and noticed that the sequence matched
ASCII uppercase letters under a modulo 26 transformation.
Extending the Fibonacci series in this manner, we arrived at
the next set of letters: KJUEZEEJ, representing positions 16
through 24 in the sequence. This guess proved correct, and we
advanced to the next phase.

Fig. 2: SageMath rendering of Q×QT

In Phase 2, the challenge provided a new sequence: 23457.
Using oeis.org to search for potential matches, we identi-
fied this as the Powers of Primes series. Given that this
sequence used digits, we applied a modulo 10 transformation
to maintain single digits. This yielded the next 16 numbers:
1271379391471391, which successfully solved Phase 2.

Phase 3 began with a different type of encoded sequence:
bceg. This time, lowercase letters indicated we were dealing
with a separate series. After further analysis, we recognized
this as the Mersenne exponents sequence. Extending this
pattern, we decoded the next part of the sequence as ssocqigu.

Phase 4 introduced yet another variation, starting with the
symbol sequence: —!”, where - represented a space. Guided
by a hint, we identified this sequence as Narayana’s Cows.
Using this insight, we derived the following encoded symbols:
%&#(.!)’.

With all four sequences correctly input, the motor began
to rotate, with each rotation signifying a letter in the flag.
At this point, we reset the Arduino to streamline the process.
Instead of manually re-entering each sequence, we utilized a
logic analyzer to map each motor movement to the encoded
sequence, constructing a complete decoding dictionary.

Using this approach, we successfully uncovered the final
flag:

FLAG: S3qu3NC3 (n0T sEQU!ns)

Week 2

KeyRing 1: This week’s challenge requires us to leverage
side-channel data from 3D printers collected during the print-
ing of important physical keys. The objective is to use side-
channel information to categorize the data into their respective
keys. The dataset provided to the attacker in this first challenge
is divided into “labeled” and “unlabeled” data.

Specifically, the “labeled” dataset contains files for four
different types of keys: KeyA, KeyB, KeyC, and KeyD. For
each key, a set of STL, MP3, and CSV files are provided,
representing the audio of the print collected from a device
near the printer, the vibrations of the print collected from an
accelerometer near the printer, and the final representation of
the printed object, respectively. The “unlabeled” dataset, on
the other hand, is a collection of snippets from the previous
prints, in the form of MP3 or CSV files. This latter detail is
crucial for choosing the correct approach, as we will need to
tailor our technique depending on whether we are provided
with audio or vibration data for a print to classify.

The approach chosen to solve this challenge was to use
Machine Learning (ML) models, training and validating them
through Supervised Learning. The idea was to train two
distinct models in parallel, one for audio data and one for
vibration data, enabling us to categorize a data sample regard-
less of whether it is in audio or vibration form.

Detailed Approach

To achieve this objective, the final structure of the Python
code was divided into the following phases: Pre-processing,
Segmentation and Synchronization, Features and Labels
Extraction, Splitting into Training and Validation Sets, Hy-
perparameter Tuning, Training Phase, Predictions Phase,
and Results Evaluation.

0) Audio and Vibration Pre-processing

As the first step, we needed to process the available data to
make it understandable to the model we intended to train. To
do so, the audio files were corrected with a bash script because
the audio duration reported in the file headers did not match the
actual duration. Subsequently, they were loaded into the code
using the librosa library, which also allowed us to identify
that the audio is sampled at 44.1 kHz with 16-bit precision.
Additionally, a band-pass filter was applied to reduce the
present noise. Regarding the vibrations, the pandas library
was used. These are sampled at a frequency of 500 kHz.

1) Segmentation and Synchronization of Audio and Vibrations

The next (crucial) step was to segment the audio and vibra-
tion data into frames of equal length, as they were collected
at different frequencies and durations. To address the issue of
MP3-CSV file tuples where one has slightly longer timestamps
than the other, we chose to take the shorter duration and
trim the longer one. Subsequently, the files were segmented
into frames of 100 ms (0.1 seconds), although other segment
lengths proved to be efficient with very similar results, such
as 50 ms (0.05 seconds) and 200 ms (0.2 seconds). Shorter

or longer segments each brought their own advantages and
disadvantages in terms of precision and specificity; a 100 ms
segment was chosen as the final selection for an optimal trade-
off. Once we obtained equal-length data series segmented into
equal frames, we ensured that the frames were synchronized
with each other.

2) Features and Labels Extraction

To provide the processed data to the model in a usable for-
mat, we extracted for each audio and vibration file the feature
matrices Xaudio and Xvibrations, shaped as X ∈ Rnframes×nfeatures ,
where each row of the matrix X corresponds to a feature vector
for a single frame.

Specifically, we extracted the following features:
Audio Time-Domain Features:
• Frame Energy
• Zero Crossing Rate (ZCR)
Audio Frequency-Domain Features:
• Short-Time Fourier Transform (STFT)
• Dominant Frequency
• Spectral Entropy
• Spectral Flux
• Spectral Centroid
• Spectral Bandwidth
• Spectral Contrast
• Chroma STFT
• Spectral Roll-off
• Tonnetz
Audio Combined Time and Frequency Features:
• MFCCs (Mel-Frequency Cepstral Coefficients)
Vibrations Time-Domain Features (for each axis X, Y, Z):
• Mean
• Standard Deviation (STD)
• Root Mean Square (RMS)
• Zero Crossing Rate (ZCR)
• Peak Values
• Skewness
• Kurtosis
Vibrations Frequency-Domain Features (for each axis X, Y,

Z):
• Spectral Energy
• Dominant Frequency
• Spectral Entropy
Vibrations Cross-Axis Features:
• Correlation XY
• Correlation XZ
• Correlation YZ
For each frame’s feature vector, a label was associated based

on the file name from which X was extracted. For example, if
the feature matrix X was extracted from the file KeyA.mp3,
then each vector would be associated with the label KeyA.
Since our assigned labels are in the form of strings, to make
them understandable to the models, we encoded them using
the fit_transform function of LabelEncoder from the
scikit-learn library.

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html#sklearn.preprocessing.LabelEncoder.fit_transform
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
https://scikit-learn.org/stable/index.html

3) Splitting the Dataset into Training Set and Validation Set

Given the limited dataset provided for training our models,
and especially the lack of feedback to verify our results
within the challenge system, we believed that employing
a Cross-Validation method was essential to present more
valid results. Specifically, we implemented Stratified K-Fold
Cross-Validation, adding StratifiedKFold to the model
training pipeline.

4) Hyperparameter Tuning

To maximize the performance of our pipelines, we con-
ducted Hyperparameter Tuning using a GridSearch to ex-
plore the parameters for our models. Specifically, the following
parameters were optimized within the given value ranges:

Hyperparameter Value Range

classifier__n_estimators 50, 100, 200, 500, 1000
classifier__learning_rate 0.001, 0.01, 0.1, 1.0, 10
classifier__estimator__max_depth 1, 5, 10, None
classifier__estimator__min_samples_split 2, 5, 10

TABLE II: Hyperparameter Tuning Parameters

Training, validating, and evaluating all parameter combina-
tions took approximately ∼40 minutes. Finally, one of the best
combinations of hyperparameters found for both pipelines,
audio and vibrations, was:

Hyperparameter Audio
Pipeline

Vibration
Pipeline

classifier__n_estimators 100 100
classifier__learning_rate 1.00 0.01
classifier__estimator__max_depth 1 1
classifier__estimator__min_samples_split 10 2

TABLE III: Optimal Hyperparameter Combinations

5) Training Phase

For the training phase, we chose to use
DecisionTreeClassifier boosted with
AdaBoostClassifier for both models (Audio and
Vibrations). The parameters passed to these models were the
.best_params_ previously obtained from the GridSearch.

6) Predictions Phase

Predictions were made in two stages. The initial predictions
were conducted on the dataset split into training and testing
sets within the “labeled” dataset to evaluate the accuracy of
the freshly trained models and obtain reliable results. Once
satisfied with the obtained accuracies, the models proceeded
to an additional prediction phase, this time on the “unlabeled”
dataset. However, this time, predictions on the models were
made using the .predict_proba method, which allows
us to obtain the probability of a sample belonging to each
key type (KeyA—KeyB—KeyC—KeyD). The results of these
predictions would be the categorizations of the MP3/CSV files
for which we need to determine the corresponding key.

7) Results Evaluation

The results of all the preceding steps were finally evaluated
using scikit-learn’s accuracy calculation functions, such as
accuracy_score. To better visualize the categorizations
made by the models, confusion matrices were also calculated
and plotted for each model.

Our research results concluded with excellent outcomes: an
average accuracy of ≥ 90% for the audio classifier model
and an average accuracy of ≥ 95% for the vibration classifier
model. The average accuracies were calculated from the var-
ious results obtained from different optimal hyperparameter
configurations, different training and validation set splits, and
different frame granularities. Below are final classifications
with respective probabilities for each prediction, based on the
aforementioned results.

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html

TABLE IV: Class Probabilities for Each File

File Predicted Class KeyA (%) KeyB (%) KeyC (%) KeyD (%)

sample1.csv KeyD 0.00 0.00 0.00 100.00
sample2.csv KeyD 0.00 0.00 0.00 100.00
sample3.mp3 KeyA 99.90 0.00 0.02 0.08
sample4.mp3 KeyA 70.66 0.00 12.59 16.75
sample5.mp3 KeyC 33.45 0.00 34.93 31.62
sample6.mp3 KeyA 65.47 0.00 22.19 12.33
sample7.mp3 KeyA 99.99 0.00 0.01 0.00
sample8.mp3 KeyA 99.34 0.00 0.66 0.00
sample9.csv KeyC 0.00 0.00 100.00 0.00
sample10.mp3 KeyD 5.99 44.04 0.00 49.97
sample11.csv KeyC 0.00 0.00 100.00 0.00
sample12.csv KeyA 100.00 0.00 0.00 0.00
sample13.mp3 KeyD 44.13 0.00 0.01 55.86
sample14.mp3 KeyC 26.99 0.00 73.01 0.00
sample15.csv KeyA 100.00 0.00 0.00 0.00
sample16.csv KeyD 0.00 0.00 0.00 100.00
sample17.mp3 KeyA 99.99 0.00 0.01 0.00
sample18.csv KeyB 0.00 100.00 0.00 0.00
sample19.mp3 KeyA 90.13 0.00 9.84 0.03
sample20.mp3 KeyA 100.00 0.00 0.00 0.00
sample21.csv KeyB 0.00 100.00 0.00 0.00
sample22.csv KeyA 100.00 0.00 0.00 0.00
sample23.csv KeyA 100.00 0.00 0.00 0.00
sample24.mp3 KeyD 0.00 12.50 0.00 87.50
sample25.mp3 KeyC 6.98 0.00 93.02 0.00
sample26.mp3 KeyC 33.66 0.00 66.34 0.00
sample27.csv KeyC 0.00 0.00 100.00 0.00
sample28.csv KeyB 0.00 100.00 0.00 0.00
sample29.mp3 KeyA 98.65 0.00 1.29 0.06
sample30.csv KeyC 0.00 0.00 100.00 0.00
sample31.csv KeyA 100.00 0.00 0.00 0.00
sample32.csv KeyD 0.00 0.00 0.00 100.00
sample33.csv KeyC 0.00 0.00 100.00 0.00
sample34.csv KeyB 0.00 100.00 0.00 0.00
sample35.mp3 KeyA 82.44 0.00 17.56 0.00
sample36.mp3 KeyA 99.52 0.00 0.47 0.02
sample37.mp3 KeyA 60.71 0.00 0.00 39.29
sample38.csv KeyC 0.00 0.00 100.00 0.00
sample39.csv KeyB 0.00 100.00 0.00 0.00
sample40.mp3 KeyC 49.08 0.00 50.20 0.72

Week 3

Lizzy: Upon loading the firmware, the system prompted
us with a series of integer values for calibration. It required
numbers between 1 and 200 to proceed.

Once calibrated, the system began outputting pairs of
numbers while rotating the servo motor. After running some
tests, we observed that this ”calibration” value was effectively
controlling the servomotor’s speed: the higher the value, the
slower the motor moved.

Initially, the system printed the following values:

135 45
135 0

These values corresponded with movements of the servo
motor, after which it stopped printing and only moved the
servomotor.

Referring to the challenge image and a description mention-
ing boats, we quickly deduced that it represented a semaphore
flag pattern. In this protocol, each angle represents an arm
position, allowing us to reconstruct letters from the servo
motor movements.

Fig. 3: Visual representation of the flag semaphore

The challenge now consisted of reconstructing arm positions
using the servo output. Fortunately, we had access to an oracle
that allowed us to input our sequences and observe the servo’s
reactions.

The servomotor exhibited specific patterns:
• Clockwise/counterclockwise rotation by a fixed angle,

followed by a variable stop time.
• By measuring this stop time (achieved by connecting a

servomotor and parsing the PWM to extract data), we
noted that the time was not random. Instead, it was
dependent on the given input.

Through logic and analysis, we tested inputs such as:

0 0
45 45
90 90

Each time, we observed either:

• Clockwise rotation with a 15 ms stop, or
• Counterclockwise rotation with a 110 ms stop.

We inferred that the stop duration represented an angle,
rescaled by 360/125, as an initial output stated ”rotating by
360 degrees” and the servo halted at 125 ms intervals. After
this rescaling, the stop-time closely matched 45◦ multiples.
Clockwise and counterclockwise rotations were indicators of
the delta’s sign:

Right : +45◦

Left : −45◦

For example, starting from 0◦:

• Rotate right by 45◦ to reach 45◦.
• Rotate right by another 45◦ to reach 90◦.

Using this methodology, we translated servo movements to
arm positions and vice versa, ultimately revealing the message:

CIPHER ZJXLZMOEZVREJBXRUIRWYGLHVPTD-
KWZO

Testing the Vigenère cipher decoding using
dcode.fr/vigenere-cipher with ”Automatic
Decryption,” we identified the probable key: RITA. The
resulting plaintext read: IBELIEVEINYESTERDAY-
WHYSHEHADTOGO, a well-known line from the Beatles’
song ”Yesterday.”

Continuing with this, we encoded the phrase
”IDONTKNOW” (a further line from the lyrics) back into
the Vigenère cipher, yielding the ciphertext ZLHNKSGON.
Converting this into semaphore angles for flag signaling, we
derived the following sequence:

[(315,270), (225,45), (90,45), (315,45),
(180,45), (315,90), (315,0), (135,90),
(315,45)]

Upon submission, the console displayed the message:

1 /******************** YOU BEAT THE
CHALLENGE!!! ********************/

2 /********************
Congrats!!!

********************/

Fast & Max: In this challenge, we were tasked with ana-
lyzing a simulated banking system to retrieve an employee’s
card number and PIN. The challenge was divided into two
main tasks:

1) Decrypting an employee card number encrypted using
an RSA-like scheme.

2) Unlocking a second safe with a rotor-lock mechanism.

To reverse engineer the code, we used Ghidra and com-
piled Arduino code ourselves to pattern match the function
signatures. This allowed us to approximate the Arduino code,
including standard functions like print, delay, and input.

Upon booting, the challenge initiated a rotation of the servo
motor, outputting the card number in 4-digit chunks. The
motor’s PWM signals and timing followed a pattern:

X,Y, Z, Y, Z, Y,X, Y, . . .

Here, Y appeared as a divisor of time, while X and
Z represented bits. Extracting the bit sequence yielded
1101110000011. In the reversed code, we observed the
sequence was transmitted from the Least Significant Bit (LSB)
to the Most Significant Bit (MSB). By reversing the string and
converting it to a number, we obtained:

First quartet: 1101110000011 → 1100000111011 → 6203
Second quartet: 11101110010001 → 10001001110111 → 8823
Third quartet: 1001010110001 → 1000110101001 → 4521
Fourth quartet: 10010100100001 → 10000100101001 → 8489

Concatenating the four decoded quartets, we obtained the
complete 16-digit Employee Card Number:

6203 8823 4521 8489

For the second part, we observed that the stepper motor
rotated clockwise for X times and counterclockwise for Y
times, depending on the length of the PIN input. The rotation
patterns alternated between clockwise (R) and counterclock-
wise (L) for various PIN inputs. Examples include:

1 : RL
1 : RLR
1 : RLRR
2 : RRLLR
2 : RRLLRR
2 : RRLLRRR
. . .

Each letter in the alphabet corresponded to a specific degree
of rotation, with A mapping to 1◦, B to 2◦, C to 3◦, and so
forth. For instance, sending the PIN AB caused the motor to
rotate right by 1◦ and left by 2◦. The input AABBB resulted
in 1◦ right, 1◦ right, 2◦ left, 2◦ left, and finally 2◦ right.

Beyond a certain rotation threshold, the motor emitted a
deeper sound. By testing the rotation sequence ZZZZZ, we
observed that halfway through the second Z rotation, the sound
shifted to a lower pitch. This sound change was reflected in
the motor’s signal, as it shifted from a sample rate of 6.23
ms to 4.1 ms. By counting the number of 4.1 ms samples, we
could deduce the correct degrees of rotation.

Week 4

Safecracker 1: This challenge involved analyzing an MP3
recording of a safe with a rotor lock mechanism. The task was
to identify the code required to unlock the safe by interpreting
the sound produced as the rotor moved.

Fortunately, the lock is driven by a motor, so the time taken
for each rotation increases linearly with the input size. From
the demo, we extracted the time required for one step rotation,
approximately 31.63 ms. By examining the MP3 file (or the
waveform graph), we could determine the number of steps
taken by measuring the duration of each rotation.

Below is an example of the recorded movements, and in
Figure 4, the waveform plot clearly illustrates variations in
sound duration, corresponding to different lengths of rotation.

Fig. 4: Waveform plot showing variations in rotation duration

Movement lasted 4144.54 ms
Movement lasted 2926.77 ms
Movement lasted 215.29 ms

Interval: 4144.54 ms
Number of steps: 131.01
Interval: 2926.77 ms
Number of steps: 92.51
Interval: 215.29 ms
Number of steps: 6.81

By extracting the duration of each rotation from the record-
ing during Phase 1, we determined the code sequence as
follows:

1) 131 S
2) 92 S
3) 7 S

A. Safecracker 2

Following the same methodology as in Phase 1, we ex-
tracted the duration of each of the five rotations. To determine
the rotation mode, we leveraged the distinct mean absolute
amplitude associated with each mode as we can see from the
Fig 5, which we obtained from the audio signal during the
demo phase.

Below are the recorded intervals, number of steps, and mean
amplitude values:

Interval: 6283.21 ms

Fig. 5: Waveform plot showing variations in rotation duration
and amplitude

Number of steps: 195.92
Mean amplitude: 670.01
Interval: 1909.81 ms
Number of steps: 60.37
Mean amplitude: 775.43
Interval: 1292.60 ms
Number of steps: 40.86
Mean amplitude: 412.85
Interval: 637.17 ms
Number of steps: 20.14
Mean amplitude: 403.55
Interval: 485.17 ms
Number of steps: 15.34
Mean amplitude: 686.32

By analyzing these values and comparing the mean am-
plitudes, we successfully determined the rotation modes for
each interval and completed the final challenge. The resulting
sequence was:

1) 196 I
2) 60 D
3) 41 S
4) 20 S
5) 15 I

IV. CONCLUSION

In this report, we demonstrated a practical approach to
hardware-based challenges by focusing on signal analysis and
hardware interaction rather than conventional reverse engi-
neering. Using a logic analyzer to capture binary signals, we
were able to interpret encoded data, identify sequence patterns,
and solve matrix transformations, which ultimately revealed
encrypted information. This signal-driven methodology proved
effective in analyzing timing patterns, motor sequences, and
encrypted messages, enabling us to decode complex challenges
on an Arduino-based system.

For challenges involving machine learning, we applied
models to classify audio and vibration data, achieving high
accuracy and reinforcing the versatility of combining hard-
ware analysis with data-driven techniques. By systematically
approaching each phase, we developed a deep understanding
of side-channel and timing-based vulnerabilities, showcasing
how even standard hardware components can be leveraged to
uncover sensitive information.

Overall, this experience highlighted the value of signal-
based analysis and non-invasive techniques in embedded secu-
rity contexts, where insights into system behavior can reveal
critical information without direct code manipulation. The
methodologies employed here provide a foundation for future
exploration of similar side-channel challenges, particularly in
the context of embedded and IoT systems.

	Introduction
	Our Approach
	Challenge Solutions
	Normal Or Though
	Friendly Disposition

	Safecracker 2

	Conclusion

