
CSAW ESC 2025 Final Report

TheRomanXpl0it - Sapienza

Francesco Vertucci
Sapienza University of Rome

francesco.vertucci22@gmail.com

Kristjan Jurij Tarantelli
Sapienza University of Rome
tarantelli.kristjan@gmail.com

Federico Angelilli
Sapienza University of Rome

fedeangelilli@gmail.com

Lorenzo Colombini
Sapienza University of Rome

lorenzinco23@gmail.com

Emilio Coppa
Luiss University of Rome

ecoppa@luiss.it

Abstract—We present our end-to-end exploitation and mitiga-
tion study for the CSAW ESC 2025 hardware challenges using the
ChipWhisperer Nano platform. Our workflow combines classical
physical-attacks (timing/power side channels and fault injection)
with targeted automation and machine learning to accelerate data
collection, analysis, and verification. To scale experimentation
remotely, we built a lightweight module to drive ChipWhisperer
over SSH/RPyC from personal laptops via a Raspberry Pi relay,
enabling reproducible headless capture, centralized storage, and
multi-user collaboration.

Beyond exploitation, we distill concise, evidence-backed coun-
termeasures and map them to the precise leak points we
abused. Our report emphasizes correctness (all flags recovered
and validated), AI/ML augmentation (ML models and LLM-
assisted tooling to automate acquisition and post-processing), and
operational efficiency (reduced queries via side-channel guided
search, automated glitch sweeps, and remote orchestration). The
result is a practical blueprint for attacking and defending small
MCUs under realistic, resource-constrained conditions.

Index Terms—Side-channel analysis, fault injection, ChipWhis-
perer, correlation power analysis, hardware security, machine
learning for SCA.

I. INTRODUCTION

Side-channel analysis (SCA) and fault injection attacks
(FIA) exploit the physical behavior of embedded systems to
extract or alter sensitive information. Even when cryptographic
or authentication algorithms are mathematically secure, their
physical implementation often leaks unintended information
through timing, power consumption, or electromagnetic emis-
sions [1]–[3]. Measuring and correlating such signals can re-
veal secret keys, passwords, or internal control-flow decisions.
Complementary to passive observation, active fault injection
manipulates voltage, clock, or electromagnetic conditions to
corrupt execution, skip security checks, or induce logic faults
that expose hidden data [4], [5].

These techniques have evolved from theoretical models
to practical attacks feasible on low-cost platforms. Modern
SCA combines precise synchronization, high-resolution data
capture, and advanced statistical or learning-based analysis to
isolate information-bearing variations across noisy traces [6],
[7]. FIA, on the other hand, increasingly relies on automation

to find timing offsets that deterministically disturb the target,
turning reliability issues into exploitable vulnerabilities [8],
[9].

The CSAW ESC 2025 hardware track challenged partici-
pants to apply such physical attacks on real embedded targets
using the ChipWhisperer Nano board. Each task required
recovering a secret flag by leveraging power analysis, timing
side channels, or fault injection. Our team approached the
competition with two primary objectives. First, to demonstrate
how classical side-channel and fault-injection analyses can
be improved and scaled through lightweight automation and
machine learning — i.e., propose new SCA/FIA strategies
using ML, accelerate per-byte/trace decisions with compact
models, and build efficient, reusable scripts that make es-
tablished attacks both faster and more robust. Second, to
provide an open, collaborative infrastructure that enables re-
producible experimentation and remote hardware access: the
ChipWhispererRemote Python module (discussed below)
exposes the ChipWhisperer API over RPC, supports headless
captures via a Raspberry Pi relay, and streamlines the work-
flow for geographically distributed teams.

Throughout the report, we document how this infrastructure
supported the exploitation of several real-world leakages —
from correlation-based power analysis and trace classification
to timing and fault-induced data corruption — and how the
same framework can serve as a foundation for secure firmware
testing and educational research.

II. OUR APPROACH

We attempted and solved all three sets of challenges. Table I
summarizes the recovered flags, ordered by week.

For this year’s challenge, we adopted a fully remote and
automated setup to maximize collaboration and reproducibil-
ity. The provided ChipWhisperer Nano was connected to
a Raspberry Pi 4, which acted as a relay on our internal
network. This configuration allowed every team member to
perform captures, parameter sweeps, and data downloads from
anywhere without direct physical access to the hardware.



Challenge Name Recovered Flag

Gatekeeper 1 gp1{l0g1npwn}
Gatekeeper 2 gp2{7rU3ncrYkIND}
Critical Calculation cc1{C0RRUPT3D C4LCUL4T10N}
Sorter Song 1 ss1{y0u g0t it br0!}
Sorter Song 2 ss2{!AEGILOPS chimps}
Dark Gatekeeper ESC{J0lt Th3 G473}
Hyperspace ESC{21hYP35TrEEt}
Ghostblood ESC{Th*t’sT*eSp1*1t!}
AlchemistInfuser a1c{Wh1teDragonT}
Echoes of Chaos eoc{th3yreC00ked}

TABLE I
RECOVERED FLAGS FOR ALL CSAW ESC 2025 CHALLENGES.

To achieve this, we developed ChipWhispererRemote,
a lightweight Python module that provides remote access to
the complete ChipWhisperer API through secure SSH and
RPyC communication. The module allows seamless invocation
of standard ChipWhisperer functions, including programming,
arming, triggering, and trace acquisition, while transparently
handling data transfer between the remote device and the local
analysis environment.

This tool was crucial for coordinating long-running experi-
ments such as power-trace collection and glitch sweeps, where
the Raspberry Pi’s limited processing power and thermal con-
straints previously caused frequent interruptions. Offloading
the computationally expensive steps (e.g., correlation analysis,
CNN inference, or trace alignment) to local machines allowed
us to run automated scripts overnight, dramatically improving
throughput and experiment consistency.

By prioritizing modularity and ease of use,
ChipWhispererRemote became a central component
of our workflow. It facilitated asynchronous contributions
from all team members, streamlined trace management,
and reduced the iteration time required to test new ideas
or mitigation hypotheses. We expect the framework to
remain useful beyond this competition as a general-purpose
remote control and automation layer for the ChipWhisperer
ecosystem.

An example of how to interact with the ChipWhisperer
through our module is shown below:

1 from remote_cw import remote_cw, RemoteConfig
2 from helper_cv import setup_cw, cap_pass_trace
3 from rpyc.utils.classic import obtain
4

5 cfg = RemoteConfig(
6 host="www.remotecw.example",
7 user="pi",
8 key_filename="path/to/priv_key",
9 port=18812, # RPyC port

10 connect_host="127.0.0.1",
11 remote_host="127.0.0.1",
12 )
13

14 with remote_cw(cfg) as cw:
15 # Runs on the remote machine (Raspberry Pi)
16 scope, target, prog = setup_cw(cw, cw.scope())
17 trace_data = cap_pass_trace(...)
18 local_data = obtain(trace_data)
19

20 # Runs locally on the analyst’s computer
21 expensive_computation(local_data)

This hybrid approach enabled controlled, reproducible ex-
periments across multiple devices while maintaining full flex-
ibility for data processing and analysis.

III. WEEK 1

In the first week we solved three challenges and developed
the remote interaction module.

A. GateKeeper

In this challenge, the password checker exhibited distinct
power traces depending on whether the character currently
tested was correct. Our first goal was to ensure that the
entire password-checking routine could fit within a single
acquisition, since the provided ChipWhisperer Nano did not
support capturing multiple traces per run or streaming data
directly to the Raspberry Pi.

To achieve this, we overclocked the target to reduce the
delay between individual character checks, and underclocked
the ChipWhisperer to capture fewer samples while maintaining
temporal resolution. We then set the capture size to 100,000
samples, which worked reliably even though the official doc-
umentation suggests otherwise.

First Approach. The first challenge came pre-solved (the flag
was provided within the Jupyter notebook gk1{l0g1npwn}),
allowing us to use that data leak to train a convolutional neural
network to classify whether a single character check was cor-
rect or incorrect. We trained the model in this way because we
knew that the second challenge would feature shorter delays
and a different password length, making approaches based on
counting wrong characters ineffective. The task turned out to
be straightforward for the network, which achieved 99% test
accuracy. The architecture of our convolutional neural network
is in Fig 1.

Using this model on the segments of each captured trace
corresponding to the password checks, we could accurately
determine whether each character was correct or not. By
iteratively reconstructing the password one character at a time,
we successfully recovered the full 12-character flag in just a
few minutes.

Input

1×N

ConvBlock ×3

Conv1d(stride=2)

BatchNorm1d

ReLU

Linear

16 → 2
Binary Output

Fig. 1. Architecture of the 1D CNN for trace classification.

Second Approach. Besides the CNN, we also developed
a simpler, fully analytical method based on comparing the
frequency spectra of traces. A naive sum of absolute differ-
ences (SAD) in the time domain failed to reveal meaningful
leakage: although correct and incorrect characters triggered
visibly different behaviors, the corresponding signals were
often misaligned in time due to the variable-length delay loop



in the firmware. These phase shifts caused SAD to fluctuate
unpredictably even for identical traces.

Transforming the traces using the discrete Fourier transform
(DFT) solved this problem. By comparing the magnitudes
of the spectra, we effectively ignored temporal misalignment
while capturing the characteristic energy peaks introduced by
the delay loop whenever a correct character was processed.
This made the difference between correct and incorrect guesses
immediately apparent, producing highly stable results across
all traces. Despite its simplicity, the DFT-based approach
achieved time performance comparable to the CNN while
requiring no training data and no manual split of the trace.

Both methods successfully retrieved the other flag:
gk2{7rU3ncrYkIND}.

B. Critical calculation

The challenge runs a tiny built-in diagnostic: when you send
the simpleserial command “d” the firmware raises a trigger,
executes a deterministic double loop that increments a counter
(100 × 40 × 2 = 8000), then lowers the trigger and checks the
counter. If the counter equals 8000 the device replies with
a padded “DIAGNOSTIC_OK...” message; if the loop is
disturbed (iteration skipped, counter corrupted, early exit, etc.)
the firmware takes the failure branch and leaks the secret flag
via simpleserial put.

We solved it by fault-injecting that loop. Using our re-
mote setup we boosted the target clock and tuned the
scope, then performed a systematic sweep over glitch tim-
ing (ext offset) and width (repeat)1 while issuing the “d”
command and reading the response. Most attempts returned
with positive response or caused resets, but at a specific
timing —width = 2 and offset = 16— the glitch corrupted
the loop (so cnt != 8000) and the device emitted the flag
cc1{C0RRUPT3D_C4LCUL4T10N}.

Mitigations. A simple and effective mitigation for this
particular diagnostic is redundancy: run the loop twice and
compare results, or perform a consistency check with an inde-
pendent counter/CRC. In addition, deploying glitch sensors or
active voltage monitoring (which reset or halt execution on ab-
normal supply disturbances) would prevent simple MOSFET-
based shorting attacks from causing information leakage.

C. Sorter Songs

This challenge exposes two secret arrays that are randomly
generated and sorted at boot: a 15-element 8-bit array (verified
by command ‘a’) and a 15-element 16-bit array (verified by
command ‘b’). The firmware also implements a “prepare”
command (‘p’) that lets the user prepend a chosen value to
a partial copy of one of the secret arrays; the device then
sorts this modified buffer using commands ‘c’ (for 8-bit)
or ‘d’ (for 16-bit). Because the sorting operation’s timing
and power profile change depending on whether the inserted
element is smaller or larger than the next element in the hidden
array, each capture effectively leaks one comparison result —

1Official reference: https://chipwhisperer.readthedocs.io/en/v6.0.0b/
Capture/ChipWhisperer-Nano.html#glitch

turning the sorting process into a timing/side-channel oracle.
By exploiting these subtle differences, it becomes possible to
reconstruct the entire secret array element by element.

We solved the first challenge (the 8-bit array) by scripting
the ChipWhisperer remotely, capturing two reference traces
for adjacent guesses, and then sweeping through possible byte
values. For each position, we used ‘p’ to build an array starting
with our guess and then triggered a sort with ‘c’, comparing
the resulting trace with the references. When the trace diverged
significantly, it indicated that we had just crossed the correct
boundary, allowing us to fix the previous byte as correct and
move to the next position. Repeating this process recovered all
15 elements, and submitting them with ‘a’ revealed the flag
ss1{y0u_g0t_it_br0!}.

For the second challenge (the 16-bit array), we employed the
same idea but replaced the linear scan with a binary search
over the 16-bit range, which reduced the number of traces
required per element. Each comparison indicated whether our
guess should be higher or lower, allowing us to converge
quickly to the true value. After reconstructing all 15 elements,
sending them with command ‘b’ produced the second flag
ss2{!AEGILOPS_chimps}.

IV. WEEK 2

A. Dark Gatekeeper

This challenge implements a 12-byte password verification
routine invoked with command ’a’. The firmware compares
each byte of the input with a hidden master_key inside
a trigger-delimited region and finally returns either “Access
Denied...” or the flag. Although the loop does not break
early on mismatches, each comparison introduces a subtle
variation in power consumption, leaking information about
which bytes match.

First Approach. We exploited this leakage using a simple
side-channel analysis (SCA) based on the maximum sum
of absolute differences between each captured trace and a
reference. For each position, we fixed the known prefix,
iterated one character across printable bytes, and scored traces
against the reference window. The correct byte consistently
produced the highest deviation, as matching comparisons shift
the signal amplitude after a few dozen samples. Figure 2
shows an example overlay between the reference trace and
different guesses, where the correct byte exhibits a clear
offset. Repeating this process for all positions revealed the
full password 7N4>qp14c70!, which successfully unlocked
the flag ESC{J0lt_Th3_G473}.

Second Approach. Separately, we attempted fault injection
to force the device into a state that would print the flag.
Instead of toggling the final access_granted bit, one
particular glitch produced an unexpected partial memory leak:
with repeat=4 and ext_offset=38 the device printed
the 12-byte password itself (followed by padding/adjacent
bytes): b’7N4>qp14c70!\x00\x00\x00\x00Ac’. This
behavior is consistent with a transient memory or control-
flow corruption (for example, a corrupted return address, stack



Fig. 2. Overlayed traces for one password position: the correct guess shows
a consistent post-comparison offset.

pointer, or a write/read to an in-RAM buffer) that caused the
program to copy or transmit secret data accidentally.

Mitigations. The SCA leak is closed by making com-
parisons constant-time and data-oblivious (e.g., accumulate
differences and branch only once after the full loop). The FIA
result highlights the need for redundancy and memory-safety
practices: avoid printing sensitive buffers on error paths, add
redundant consistency checks for authentication results, and
consider simple hardware sensors to detect/abort on abnormal
supply events.

B. Hyperspace Jump Drive

This challenge hides a 12-byte “ignition sequence” and
exposes two useful commands. The ’a’ (arm) command
compares a 12-byte input against the hidden sequence and
returns either a fake “FailureToLaunch!” message or — on a
specific branch — the real flag. The ’p’ (polarity) command
XORs a one-byte mask with each secret byte inside a trigger-
delimited loop; that loop generates regular, byte-aligned power
activity that is ideal for side-channel analysis.

We performed a classic CPA (Correlation Power Analysis)
on the ’p’ handler. We captured 256 traces with inputs 0..255;
each trace contains twelve distinct windows (one per secret
byte). For every window and every key guess (0..255) we
predicted the Hamming weight and computed the sample-
wise correlation with the measured traces. The correct guess
produces a pronounced correlation peak in the time window
corresponding to that byte.

Applying this procedure across all twelve windows recov-
ered the full ignition sequence: 37 45 4c 16 6e 1c 77
2d 5b 5a 22 7b. Submitting those bytes to ’a’ triggered
the leak branch and returned the flag: ESC{21hYP35TrEEt}.

C. GhostBlood

This challenge implements a custom stream cipher, based
on ROTL operations arranged in a ChaCha-like quarter-round
structure. It has an internal state of 16 words, of which 8 words
are the unknown key.

With the provided shift function, we can run the cipher
with custom shifts (four 8-bit values) and a threshold. Using

Fig. 3. CPA correlation heatmap for one key byte (guesses 0–255 on the
vertical axis, sample index on the horizontal axis). Bright vertical structure
indicates the sample region where certain guesses correlate strongly with the
measured power; the brightest row is the winning key guess.

the ChipWhisperer we can capture a power trace when the
count of ROTL operations reaches the threshold.

This allows us to probe each individual ROTL behavior.
Using a simple correlation analysis between traces (shown in
Fig 4), we can distinguish between the branch taken by the
if statement, which depends on the condition a ≥ 216−b. By
varying only the last shift for the column (e.g. shift[2] for
the third ROTL operation), we can find the minimum shift that
triggers the true branch. This is a reliable way to constrain the
ROTL input to a range of [216−b, 216−b+1).

For each threshold value, we can provide many combina-
tions of shifts, excluding the shift at index (thresh-1)%4,
which will be linearly scanned to find the minimum branching
shift. To keep nonlinearity down, we focused only on the first
four quarter round operations. With enough samples, we can
recover information for all bits in the key.

Using our Python library, we collected a large sample set.
Then, we recreated the cipher algorithm with Z3 and added
all the constraints to symbolic 16-bit bit-vectors.

Solving the system yielded a unique key assignment:
[0xea96, 0xf735, 0x95b5, 0xba52, 0xd896,
0x1a96, 0xb689, 0x5f9].

We submitted it to the target program via the decrypt
function and obtained the flag ESC{Th*t’sT*eSp1*1t!}.

Mitigations. This challenge was a perfect example of how
seemingly sound cryptographic algorithms can be undermined
by physical attacks. As usual, we want to minimize differences
between different branches, so that an attacker will have an
harder time identifying discrepancies between traces.

A mitigation is rewriting the ROTL function to be com-
pletely branchless. By removing the if statement and cal-
culating always (a ≪ b)|(a ≫ (16 − b)), we obtain a
mathematically equivalent result with no information leakage.

V. WEEK 3

A. AlchemistInfuser

This firmware implements a two-stage transformation
around a 16-byte secret key. The device exposes three sim-
pleserial commands: ’e’ (encrypt), which first performs a



Fig. 4. The baseline trace has b = 0, so that a ≥ 216 is always false.

trigger-delimited bytewise XOR of the input with the key
(with a small software delay between bytes) and then runs an
in-place XXTEA encryption; ’d’ (decrypt), which runs the
inverse operations; and ’c’ (verify), which returns a dummy
string unless the supplied 16 bytes exactly match the internal
key, in which case it returns the flag.

Crucially, the initial XOR loop runs inside a timed region
and produces very regular, byte-aligned power activity — a
classic side-channel leakage source. The subsequent XXTEA
routine mixes words, producing a second, distinguishable
leakage region later in the capture. Because of this two-stage
structure we obtain complementary leakage: one window that
reveals information about individual key bytes directly via the
XOR, and another window that reflects the cipher’s mixing
(useful to disambiguate remaining uncertainty).

Our exploit is a pragmatic CPA-driven workflow adapted to
that structure:

1) Capture several hundred traces of ’e’ using random 8-
byte inputs, producing long recordings that contain both
the pre-XXTEA and post-XXTEA leakage windows.

2) Segment the traces into per-byte windows corresponding
to the initial XOR loop (eight windows) and the later
region (another eight windows). Compute per-window
means and standard deviations.

3) For each window and each candidate byte (0..255) com-
pute the Hamming-weight prediction and the sample-
wise correlation with the recorded traces (standard CPA).
Record the peak absolute correlation per candidate.

4) Take the top candidate per byte and also a small shortlist
of near-ties (candidates within -̃95% of the peak) to
account for statistical ambiguity.

5) Use the second leakage region and the partial key
information from phase one to further refine guesses for
the remaining bytes, again via CPA over the appropriate
modeled intermediate.

6) Finally, submit combinations from the Cartesian product
of the per-byte candidate lists to the ’c’ (verify) com-
mand until the device returns a non-dummy response.

This approach is efficient and robust: it avoids exhaustive
search over the full 128-bit key while tolerating small statisti-

cal noise. Applying it recovered the full 16-byte key (printed
by our solver) and produced the flag: a1c{Wh1teDragonT}.

B. Echoes of Chaos

This challenge extends the “Sorter Song” concept into a
more complex setting: instead of simple insertion or bubble
sorts, the firmware uses a recursive merge sort routine called
clydeSort, which merges subarrays using nested loops and
data-dependent delays. Each merge step compares two half-
arrays element by element, applying small software delays
only in one branch. This creates distinct, measurable varia-
tions in power consumption and timing — effectively leaking
information about the structure and relative order of the secret
array elements.

At startup, the device initializes a hidden 15-element array
of 16-bit integers. When queried with the command ’p’,
it builds a modified array by inserting one guessed element
at the start of a shifted copy of the secret array and then
performs a full merge sort inside a trigger-delimited region.
The resulting trace depends on whether the guessed element
belongs before or after the next unseen value in the hidden
array. The command ’a’ verifies the guessed array and returns
the flag if it matches the original.

We exploited this by performing a side-channel guided
binary search on each position in reverse order. For every
element, we captured two reference traces with nearby guesses
to establish a baseline difference, then iteratively adjusted
the guess until the measured trace difference exceeded that
reference threshold — a clear sign that the correct insertion
boundary had been crossed. Each byte-pair (16-bit value) was
thus located with minimal traces, converging logarithmically
rather than linearly.

Fig. 5. Overlay of mean traces for a single guessed insertion at position X
(top) and the difference trace (bottom). The highlighted region (samples . . . )
shows the merge-step leakage used by the attack.

After recovering all 15 values, we sorted the reconstructed
array and sent it back to the device with ’a’, which verified
it as correct and returned the flag: eoc{th3yreC00ked}.

VI. MITIGATIONS AND SECURE IMPLEMENTATIONS

All the challenges we attacked share the same root weak-
ness: the implementation lets an internal decision (comparison
result, array position, loop progress, key byte) influence some-
thing we can measure from the outside — timing, power, or
the device’s reaction to a fault. When the device is accessible
to an active adversary (exactly the CSAW ESC setup), the only



robust defence is to remove, randomize, or continuously check
these correlations. This is the same observation that underlies
most side-channel guidance from NIST and national agencies
[10]–[12].

A. Constant-Time and Data-Oblivious Code

Several of our solves depended on tiny data-dependent
branches (e.g., “insert from left array” vs “take from right
array” in the merge, or “this byte matches” vs “does not
match” in password checks). The simplest mitigation is to
make these routines constant time:

• do not break early on the first mismatch (compare the
whole array);

• keep loop bounds independent of secret data;
• avoid branches that execute extra instructions only on one

side.
For a password check, this means: walk every byte, OR the
differences into a single accumulator, and branch once at the
end. For array checks, this means: verify all 15 elements and
only then decide whether to return the flag. These patterns are
exactly the ones suggested in practice-oriented SCA write-ups
and in FIPS-style guidance on leakage-resistant implementa-
tions [11], [12].

B. Masking, Hiding, and Randomization

When the code must process a secret (key bytes, hidden ar-
rays, authentication strings), it can be protected with classical
side-channel countermeasures:

• Masking: split the sensitive value into random shares and
process the shares instead of the raw value, so that a
single trace does not directly leak the secret. Masking,
even at low order, is a standard defence in the SCA
literature [13].

• Hiding: add noise or random delays, or randomize the
processing order (e.g., shuffle merge subcalls, or shuffle
the order of bytes being compared). This does not remove
leakage but makes alignment harder — which is exactly
what we exploited when we aligned traces by trigger.

• Domain separation: keep sensitive routines in a ded-
icated, non-interruptible region, so an attacker cannot
isolate “just the compare” and correlate it.

Even on tiny boards, lightweight masking/hiding is practical
if it is planned from the beginning rather than bolted on later
[12], [13].

C. Software Fault-Injection Countermeasures

Our “Critical Calculation” glitch worked because the
firmware checked the loop counter only once and trusted it. A
basic way to harden this is to add redundancy, as suggested
in experimental FI evaluations [14]:

• compute the loop twice and compare the results;
• check the condition both in positive and in negative form

and ensure the two results are consistent;
• if an inconsistency is detected, enter a safe state and never

output the flag.

Compiler and code-layout awareness also matters: on small
MCUs a single well-timed glitch can skip two adjacent in-
structions if the compiler packed them in the same fetch
word. Spreading critical checks, or using diversified encodings,
makes this kind of single-glitch attack harder [15].

D. Hardware-Assisted Protections

Firmware alone cannot fully protect a device that the
attacker can touch. Practical products therefore add:

• Glitch / clock / voltage sensors that reset or discard a
computation if the clock or supply looks abnormal;

• Active shields or external monitors to detect probing or
EM injection;

• Secure update / secure boot so that a vulnerable
constant-time routine can be replaced later.

Surveys on microcontroller hardening point out that many
devices ship with such monitors disabled for cost or power
reasons, which leaves them open to exactly the kind of
clock/voltage attacks we used [12], [15].

E. Testing and Certification

Finally, good defences must be measured. A simple TVLA-
style “fixed vs random” leakage test would have imme-
diately shown the data-dependent merge branches and the
data-dependent compares we abused. Likewise, running an
automated fault-injection campaign (even just sweeping clock
offsets) during development would have exposed the single-
point-of-failure diagnostic check. Adding these tests to CI/CD
for embedded firmware is realistic: traces can be captured
headless (exactly like we did, via the Raspberry Pi), and re-
gressions are easy to detect. This mirrors the recommendation
in industrial/agency reports on MCU attack surfaces [12].

VII. CONCLUSION

Throughout the CSAW ESC 2025 hardware challenges, we
explored a broad range of physical attack vectors on embedded
systems — from side-channel analysis and correlation-based
key recovery to precise fault injection and signal pattern
recognition. Each challenge emphasized how even simple
hardware designs can unintentionally expose sensitive infor-
mation through timing, power, or electromagnetic emissions.
By combining rigorous data collection, statistical analysis,
and automation, we demonstrated how such vulnerabilities
can be systematically exploited without relying on firmware
disassembly or direct software introspection.

Working with the ChipWhisperer Nano platform provided a
concrete understanding of the relationship between hardware
behavior and security, highlighting the importance of physical-
layer protections such as noise injection, randomization, and
fault countermeasures. Equally important was the collabora-
tion and remote workflow we built, which allowed our team
to share resources, scripts, and captured data efficiently while
working across different environments.

Overall, this competition reaffirmed that true hardware se-
curity requires a holistic approach: algorithms must be paired
with robust implementation defenses, and developers must



assume that adversaries can both observe and perturb their
systems. Our participation strengthened our expertise in prac-
tical hardware exploitation, signal analysis, and coordinated
teamwork — experience that will continue to guide our future
work in embedded and system-level security.

REFERENCES

[1] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Annual
international cryptology conference. Springer, 1999, pp. 388–397.

[2] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems,” in Annual international cryptology conference.
Springer, 1996, pp. 104–113.

[3] S. Mangard, “Power analysis attacks: Revealing the secrets of smart
cards,” 2007.

[4] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance of
checking cryptographic protocols for faults,” in International conference
on the theory and applications of cryptographic techniques. Springer,
1997, pp. 37–51.

[5] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault injection
attacks on cryptographic devices: Theory, practice, and countermea-
sures,” Proceedings of the IEEE, vol. 100, no. 11, pp. 3056–3076, 2012.

[6] L. Lerman, G. Bontempi, and O. Markowitch, “A machine learning
approach against a masked aes: Reaching the limit of side-channel
attacks with a learning model,” Journal of Cryptographic Engineering,
vol. 5, no. 2, pp. 123–139, 2015.

[7] H. Kim, S. Lim, Y. Kang, W. Kim, D. Kim, S. Yoon, and H. Seo, “Deep-
learning-based cryptanalysis of lightweight block ciphers,” Entropy,
vol. 25, no. 7, p. 986, 2023.

[8] A. Gangolli, Q. H. Mahmoud, and A. Azim, “A systematic review of
fault injection attacks on iot systems,” Electronics, vol. 11, no. 13, p.
2023, 2022.

[9] M. Dumont, M. Lisart, and P. Maurine, “Electromagnetic fault injection:
How faults occur,” in 2019 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC). IEEE, 2019, pp. 9–16.

[10] Y. B. Zhou and D. Feng, “Side-channel attacks: Ten
years after its publication and impacts on cryptographic
module security testing,” in NIST Physical Security
Testing Workshop, 2005. [Online]. Available: https:
//csrc.nist.gov/csrc/media/events/physical-security-testing-workshop/
documents/papers/physecpaper19.pdf

[11] National Institute of Standards and Technology, “Fips 140-3: Security
requirements for cryptographic modules,” https://doi.org/10.6028/NIST.
FIPS.140-3, 2019.

[12] Federal Office for Information Security (BSI), “Study on hardware
attacks against microcontrollers,” https://www.bsi.bund.de/EN/
Service-Navi/Publications/Studies/Hardware-Attacks-Microcontrollers/
hardware-attacks-microcontrollers node.html, 2023.

[13] G. Agosta, A. Barenghi, and S. Pelosi, “Securing cryptographic
embedded software against side-channel attacks: the meet approach,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 34, no. 8, 2015. [Online]. Available: https:
//re.public.polimi

[14] N. Moro, K. Heydemann, E. Encrenaz, and B. Robisson, “Experimental
evaluation of two software countermeasures against fault injection
attacks,” in FDTC, 2014. [Online]. Available: https://arxiv.org/pdf/1407.
6019.pdf

[15] T. Trouchkine, A. Heuser, J.-M. Bruel, and P. Maistri, “Electromagnetic
fault injection against a system-on-chip, toward new micro-architectural
fault models,” in FDTC, 2019. [Online]. Available: https://doi.org/10.
1109/FDTC.2019.00013


